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Many Body Perturbation Methods in a Discrete 
Orbital Basis: Application to CH4 and Ne 

Sally Prime and Michael A. Robb 

Department of Chemistry, Queen Elizabeth College, Campden Hill Road, 
London W8 7AH, England 

Discrete basis many body perturbation calculations have been performed on Ne and 
CH 4 in a basis which mimics Boys' oscillator orbitals. The L-shell correlation energy 
obtained for Ne was -0.347 which is to be compared with the best numerical basis 
many body perturbation result o f -0 .336  -+ 0.01 obtained by Lee, Dutta and Das and 
the best variational result o f -0 ,322  obtained by Sasaki and Yoshimine. An analysis 
of 3- and 4-body corrections (pair-pair repulsions) and the effects of many body EPV 
renormalization for both localized and canonical SCF orbitals is presented. 
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1. Introduction 

In the present communication we report correlation energy calculations for CH 4 and 
Ne computed within a theoretical framework that resembles the many body perturbation 
theory (MBPT) methods of Kelly [1], However, in the present work the method has been 
formulated in such a manner (via the use of a discrete orbital basis; the use of infinite order 
diagram summation by solution of non-linear inhomogeneous equations; and the use of spin 
coupled pair functions and localized orbitals) that it is directly applicable to general mole- 
cular systems. 

Our motivation for performing the present computations was to permit a detailed compari- 
son with the results of Lee, Dutta and Das [2] on Ne, obtained using numerical basis 
MBPT methods, and the results of Ahtrichs et al. [3] o n  C H  4 using the related coupled 
electron pair and independent electron pair approximations (CEPA/IEPA). In particular 
we hoped to determine: 

a) suitable Gaussian basis sets, 
b) the importance of "many-body effects" (EPV-renormalization), and 
c) the importance of 3- and 4-body diagrams (pair-pair repulsion corrections). 

2. IEPA/CEPA versus MBPT in a Discrete Orbital Basis 

The relationship between the IEPA/CEPA and MBPT methods in the special case [4] when 
IEPA/CEPA is formulated in terms of spin-orbital pairs has been clearly established in the 
work of Freed [5], CL~ek [6], and by one of the present authors [7]. Many body effects 
only enter the theory" at fourth order and a complete treatment of these has been published 
by the present authors [8]. The relationships (for spin orbital pairs) may be summarized 
as follows: 
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Fig. 1. Diagonal hole-line diagrams of the IEPA approximation 

1) The infinite order summation of the diagrams 1 shown in Fig. 1 with no non- 
diagonal hole line interactions plus those EPV (1) rearrangement diagrams of Fig. 
2 where 7 = a and 6 = 3 gives the IEPA. 

2) The CEPA includes the diagrams of the IEPA plus the 3- and 4-body diagrams 
from the pair-pair repulsions shown in Fig. 3. 

3) The coupled pair many electron theory (CPMET) of C~ek [6] includes [8] all the 
diagrams of Figs. 1, 2 and 3 summed to infinite order. 

4) The MBPT methods of Ketly [1] as implemeted by Das e t a t .  [2] in their Ne cal- 
culations include all the diagrams of the IEPA as discussed above .plus all  the EPV 
diagrams of Fig. 2. To this result were added all the third-order diagrams of Fig. 3 
to give the final result. 

The basic difference then, between MBPT methods and IEPA/CEPA methods, arises in the 
treatment of the rearrangement diagrams of Fig. 2 and the level of approximation at which 
the diagrams of Fig. 3 are included. 

3. Spin Coupled Pairs 

In many of the calculations 2 that have been carried out using the IEPA/CEPA, the simple 
relationships just discussed in terms of spin orbital pairs, become obscured through the use 
of spin coupled pairs. In general, four spin coupling schemes are possible: 

1) spirt orbital pairs (no spin coupling) [4], 
2) pairs coupled to form two electron spin eigenfunctions (such functions would carry 

a direct product representation of symmetric groups of order 2) (see Table 1, 
Ref. [11]), 

1 The diagrams are evaluated with antisymmetrized vertices using the rules of Brandow [9] (see also 
Ref. [71). 

2 In the IEPA/CEPA calculations of Meyer [101 and Ahlrichs et al. [3], a very efficient basis of non- 
orthogonal pseudo-natural orbitals was used. However, this technical innovation does not affect the 
theoretical interpretation of the method in any way whatsoever. 
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Fig. 2. Rearrangement diagrams (unlinked cluster 
corrections). The "exclusion principle violating" 
EPV renormalization diagrams are those for 
which one has two holes or particles excited with 
the same label (e.g. diagram a with 3" = fl, diagram 
b with l = m). The EPV diagrams with (% fi) = 
(c~, ~3) are included in the IEPA while our DB- 
MBPT + EPV result includes all EPV diagrams 

" V  . . . . . .  -V 
(c) 

Fig. 3. The diagrams giving rise to the pair-pair repulsion corrections. 
Diagram a is a 3-body ring diagram - there are seven others related 
via exchange in one or more elements. Diagram b involves the off- 
diagonal matrix elements of  the HF operator and vanishes for CMO. 
Diagram c is a 4-body diagram involving a non-diagonal hole line 
intermediate interaction 
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3) spin irreducible pairs [3] (such a coupling scheme is not unique and a wide variety 
ispossible), and 

4) spatial orbital pairs [ 10]. 

The various possible spin coupling schemes may be the source of some confusion in the 
interpretation of pair function theories of electron correlation. Thus a brief review in the 
case of a closed shell SCF function q*o may be helpful. 

Let us consider the component of a pair function formed by excitation from SCF orbitals 
(with a(j3) spin), fiT) andj(])  into virtual orbitals r(f)  and s(g). We could define two electron 
spin eigenfunctions in terms of singlet and triplet particle-hole creation-annihilation operators, 

S 
= 8 ,7 CiTr ~ = ( 2 )-1/2 ( ~ ?r ~i + ~ ?~ *2T), Ci T+ = ~ ?r rl~, C~- ~ ~i, which give pair function C~rC]s ~ o, 

Ci {~ CTs ~ ~ o, Cirr + C] T- ~ o, and Ci f -  Cfs§ o . Alternatively, we could define two electron 
S 

spin eigenfunctions in terms of hole-pair annihilators, Qro = (2)-1/2(r/i~7 ~ ~ ] ) ,  Qi~* = 
S 

~i~] and particle'pair creat~ Q trsTo = (2) -1/2 (~r? ~ ? ~- ',r~?-~Y ~, ~rs~ ? r .  = ~%?,r ,ts , Q ?rs r- = ~? rl~. ? 

�9 "~S S g'l~ To/ ' )To ,It f)? T+DT+,I, These operators give rise to pair functions, Qrs Q#~o,  ~rs ~0 ~0,  ~rs ~gi ~0  and 
Q?rs r- Qi~- ~o.  In each case the triplets may be vector coupled to a singlet and this defines 
spin irreducible pairs. Of course any unitary transformation of the spin irreducible pairs 
yields an equally acceptable spin eigenfunction. Thus neither the two electron spin eigen- 
functions nor the spin irreducible pairs are unique in any way and one's choice of function 
depends upon the expediency of the particular situation. An even greater variety is possible 
for open shell systems. Finally one defines spatial orbital pairs within the IEPA scheme 
by allowing full coupling between the two vector spin singiets. 

In the CEPA method (aside from small EPV renormalization effects) the result is not depen- 
dent on the coupling scheme chosen. However, in the IEPA and related methods, the result 
of each spin coupling scheme is to include the effects of some of the diagrams of Fig. 3 but 
not to infinite order. The proper spin coupling will always be correctly accounted for by 
including the diagrams of the type shown in Fig. 3 to a sufficiently high order of pertur- 
bation theory. 

In IEPA calculations [3] the hole-pair, particle-pair scheme has been used with vector 
coupling of the triplets. In the present work we use the same scheme without vector 
coupling to facilitate diagrammatic analysis and because of computational convenience. 
Finally, it must be pointed out that the EPV renormalization is transferred from a spin 
orbital pair basis to the spin-irreducible pair basis in an ad hoc fashion in the IEPA/CEPA 
methods [10]. In the present work we are able to treat these many-body effects 
rigorously. 

4. Computational Methods 

4.t. The Discrete Basis Many Body Perturbation Theory Method (DB-MBPT) 

The method used in the present calculations may now be summarized as follows: 

1. The IEPA diagrams are summed to infinite order using the appropriate set of non- 
linear inhomogeneous equations. The equations are solved in a basis of two electron 
spin eigenfunctions (scheme 2 above). 
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2. The full EPV renormalization is then computed [1, 8]. (We shall denote this step as 
DB-MBPT + EPV.) 

3. The resulting correlation energies are then "corrected to first order" in the pair- 
pair repulsions [5] (diagrams of Fig. 3). 

Thus the essential difference between our DB-MBPT + EPV calculations and the numerical 
basis MBPT calculations of Das et al. is that we have used two electron spin eigenfunctions 
rather than spin orbital pairs. 

4.2. Basis Sets 

In the MBPT methods used by Das et al. [2] and Kelly [1] it was possible to use numerical 
atomic orbitals (up to I = 6) including all continuum contributions. However, in using this 
method it is necessary to make certain numerical approximations (e.g. the geometric 
approximation) in summing the diagrams. The resulting loss in accuracy is quite serious. 
(Das et al. quote an accuracy of only +- 0.01 for their Ne calculation.) In a discrete basis 
calculation one is attempting to make an accurate point-wise approximation to the com- 
plete basis of Das et al. [2], while at the same time keeping the dimension of the non- 
linear equations to be solved small enough for diagrams to be summed to infinite order. 
Because our basis is rather unconventional it deserves some comment at this point. 

Some time ago, Boys [12, 13] defined a basis of oscillator orbitals which was ideally 
suited for the computation of correlation effects. Oscillator orbitals were defined in terms 
of localized molecular orbitals (LMO) as 

~ l m n  - -  1 - -  r n  - n a = X ; Y a  Zaova (1) 

where �9 a is an LMO and Xa, Ya andZa are defined relative to the principle axis system of 
the second moment tensor associated with the electron density in LMO OVa- We have found 
it possible to use the following approximate form: 

r l ;  m n  = ( X -  R a x ) l ( Y -  R a y ) m ( z  - Raz) n exp ~(r - Ra) 2 (2) 

where Ra is the centroid of the charge density of LMO OVa- This function is merely a float- 
ing Gaussian and would resemble Boys oscillator orbitals (Eq. (1)) if the charge distribution 
in LMO d# a were approximately spherical. The exponent o~ remains to be optimized, 
however, we have found that the optimum value lies very close to one which reproduces 
the average spherical quadratic moment of the LMO OVa- Further, we have found that the 
use of functions of degree 0 (degree = 1 + rn + n) leads to near linear dependencies while 
functions of degree 2 have almost no effect if the basis is complete with respect to s and 
p functions centred on the heavy atom. (In preliminary test calculations on H20 the ad- 
dition of a set of oscillator orbitals of degree 2 to a basis consisting of a double zeta plus 
oscillator orbitals of degree 1 increased the correlation energy by less than 0.5%.) Thus 
our basis was the standard Gaussian 10s 6p basis [14] in the contraction (61111/411) for 
the Ne and C plus a 4s basis [14] on H contracted (31). This set was then augmented by 
a single set of oscillator orbitals of degree 1. The oscillator orbitals were arranged tetra- 
hedrally at distances 0.376 and 1.26 with exponents (~) 2.247 and 0.546 for Ne and CH 4 
respectively. 

The added oscillator orbitals have almost no effect on the SCF result (our SCF result for Ne 
is still 0.01 from the HF limit). However, "the computed correlation energy" (defined as 
the difference between the SCF result and the correlation energy calculation) should not 
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be strongly dependent on the SCF result. One may always improve the SCF accuracy by 
adding atom centred polarization functions in the usual manner. 

5. Results and Discussion 

The results of our calculations of  the correlation energies of  Ne and CH 4 are summarized 
in Tables 1, 2 and 3, along with the results of  Das etal. [2] and Ahlrichs etal. [3] for 
comparison. In Tables 1 and 2 we display the pair correlation energies and pair-pair 
repulsion corrections for canonical molecular orbitals (CMO) and LMO. In Table 3 the 
pair-pair repulsion corrections are analysed in terms of  contributions from the diagrams 
of  Fig. 3. 

5.1. Efficiency o f  Basis Sets 

The numerical basis MBPT results of  Das et al. [2] are directly comparable with our DB- 
MBPT + EPV results. Comparison of  our results in column 3 of  Table 1 and column 3 of  
Table 3 with the corresponding results of  Das etal. in column 4 of  Table 1 and column 6 
of  Table 3 shows good agreement with respect to total correlation energy and the magni- 
tude and sign of  the various possible pair-pair repulsion corrections. In making this com- 
parison it must be recognized that our SCF result is 0.012 above that of  Das et al. and 
that they estimate an overall error of +0.01 through approximate 3 methods used in 
diagram summation. It is not  possible to make similar comparisons with our CH 4 results. 
However, the difference between the empirical correlation energy of  CH 4 [10] ( -0 .295)  
and the C(3P)K shell correlation energy obtained by Kelly [15] ( -0 .042)  gives an estimate 
of - 0 . 2 5 3  for the valence shell correlation energy which agrees very well with our CMO 
result o f - 0 . 2 5 2 .  Our SCF result in this case is 0.031 above the HF limit, but despite 
this our basis appears to be highly efficient for the calculation of  correlation effects for 
both Ne and CH4. Thus we have some confidence that any conclusions drawn from a 
more detailed analysis of  the results (particularly LMO basis calculations) will have 
some validity. 

5.2. Importance o f  EPV Renormalization 

The EPV renormalization is always included in the numerical basis MBPT calculations of  
the type pioneered by Kelly [1]. However, the CEPA calculations of  Meyer on CH 4 [10] 
and those of  the present author [ 16] on BH are the only previous examples where EPV 
renormalization effects have been included in a discrete basis calculation. In Meyer's 
calculations this renormalization (the hole line rearrangement effects only) was included 
in a rather ad hoe manner due to the use of  spin irreducible pairs. In the present work we 
include the full EPV renormalization in a basis of  two electron spin eigenfunctions. 

The effect of  EPV renormalization on the total correlation energies (see Tables 1 and 2) 
is small (less than 3%). But the effect in the pair-pair repulsion energies in Ne is about 7%, 
so the low overall correction results from a cancellation of  effects. Meyer [10] computes 
an overall error due to EPV renormalization in CH 4 of  the order of  1%. This rather low 

3 Dos et al. [2] approximate the sum of diagrams beyond third order using a geometric approximation. 
In our calculations we routinely start from a geometric approximation. For Ne our DB-MBPT result 
obtained from a geometric approximation is -0.38266 which is very close to the infinite order result 
of -0.38374. However, this does reflect a considerable cancellation of errors since a typical pair 
correlation energy is in error by about 2% using the geometric approximation. 
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estimate is due to his neglect of  particle line rearrangement diagrams (Fig. 2b) which 
become important as one uses more complete basis sets. 

While the EPV renormalization effects are small in the present example one expects that 
they will become very important as the number of electrons increases and as one goes to 
larger basis sets. A brief consideration of the EPV hole-line and EPV particle-line diagrams 
of Figs. 3a and 3b with/3 = 7 and m = l illustrates this point. The hole-line rearrangement 
diagram represents the simultaneous correlation of two semi-disjoint pairs while the 
particle-line rearrangement diagram represents the simultaneous correlation of two disjoint 
pairs via a common particle. As the number of holes or particles states accessible to the 
system increases the "probability of this event occurring" increases and so does the 
importance of the corresponding diagram. Future calculations on Ne-Ne would illustrate 
this conjecture. 

The neglect of the non-EPV rearrangement diagrams (off-diagonal matrix elements) 
leads to the loss of invariance of the unlinked cluster effects (see Ref. [8] for a full dis- 
cussion) to a unitary transformation among either the occupied or virtual orbitals. However, 
inspection of Tables 1-3 shows that the EPV renormalization corrections differ very little 
between CMO and LMO and this observation lends some validity to the approximation of 
neglecting the non-EPV terms. 

5. 3. Analysis o f  the Pair-Pair Repulsion Corrections 

The previous discussion gives us some confidence that our results are reliable and we can 
now discuss the importance of the pair-pair repulsions in both the CMO and LMO bases. 
Before attempting this however it is relevant to make a brief comment on our localized 
orbitals. 

In all our calculations we have limited ourselves to valence shell correlation only. How- 
ever, in the construction of our LMO we included the ls core and since this mixed slightly 
with the 2s orbital, the computed valence shell correlation energy will not be equal for CMO 
and LMO. The difference is most apparent for CH4 where the LMO correlation energy lies 
3% below the CMO result. However, since the pair-pair repulsion correction is of the order 
of 10% of the overall correlation energy it is still meaningful to compare the CMO and 
LMO results in detail. 

The most important result concerning pair-pair repulsions relates to the use of spin 
coupled pairs. The good agreement between our results and those of Das et aL (Tables 
1 and 3) which has already been discussed, shows that the use of two electron spin 
eigenfunctions has almost no effect on the interpretation of the results. This is to be 
expected since the dominant effect of coupling the pairs in this way is to include the 
effect of diagram 3c. with 7 = ?~ and 6 = ~ to infinite order. 

Inspection of our results obtained for LMO in a basis of two electron spin eigenfunctions 
with those of Ahlrichs et al. [3] obtained in a basis of spin irreducible pairs as presented 
in Table 2 allows a comparison of the effects arising from the different spin coupling 
schemes. For the disjoint pair-pair corrections (ii/ff, ill/k, if/kl) the matrix elements are 
identical and it can be seen that our results are in satisfactory agreement with respect to 
sign and magnitude. However, for the joint (if/if) and semi-disjoint (ii/if, if/ik) pair-pair 
corrections, the results are very different in the two approaches. For example the if/if 
corrections in the present calculations are an order of magnitude larger than those of 
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Ahlrichs et  al. In addition our correction for semi-disjoint pairs is large and negative 
while that of Ahlrichs et al. is large and positive. Thus we observe a partial cancellation 
of effects that does not occur in a basis of spin irreducible pairs. Clearly, the pairs involv- 
ing the same spatial orbitals are strongly coupled and since the choice of coupling to spin 
irreducible pairs is not unique anyway (particularly for open shell systems) it may be 
more efficient to allow the diagrams of Fig. 3 to couple the pairs rather than imposing this 
from the outset. 

Finally, we should like to comment briefly on the decomposition of the pair-pair repulsions 
corrections into contributions (Table 3) arising from the diagrams of Fig. 3. For both CMO 
and LMO the 3-body correction (diagram 3a) dominates. In the LMO basis the contribution 
to the ij/ij correction arises almost entirely from this effect. On the other hand, for LMO 
this contribution is partially cancelled by the contribution from diagram 3b, and the correc- 
tion for semi-disjoint pair-pair repulsions arises almost entirely from this diagram. The 4- 
body corrections (diagram 3c) are very small (especially for LMO) and contribute mainly 
to the corrections for ii/j] pair-pair repulsions. 

In general the contributions from diagrams 3a and 3c do not change drastically on going 
fi'om CMO to LMO and it is the large negative contribution from diagram 3b which is 
responsible for any large difference in the overall effect of pair-pair repulsions. 

The results for CH 4 suggest that for well-localized systems the ij/i] (diagram 3a) corrections 
may dominate if one uses two electron spin eigenfunctions as a basis. This effect has also 
been observed in our calculations of CH 2 F2 reported elsewhere [7] and calculations on sub- 
stituted ethanes and ethylenes are now in progress to verify this. 

6. Conclusions 

It is apparent that the basis of osdllator orbitats used in this work is adequate to reproduce 
numerical basis MBPT results. Calculations using this type of basis are certainly feasible for 
molecular systems containing up to four first-row atoms. While we have presented only iso- 
lated molecule results, there is no reason to expect that this approach will not remain 
suitable for all calculations where a pair function method is possible. 

The EPV renormalization effects in these calculations are small, however this error will 
become more important (and perhaps dominant) as the number of electrons increases and 
when one considers distortions from equilibrium geometries. 

The major conclusion of the present work concerns the simplicity of the pair-pair repulsion 
corrections for LIVIO in a basis of two electron spin eigenfunctions. It would appear that 
the major correction is the contribution of diagram 3a to the ij/ij pair-pair repulsions and 
diagram 3b to the semi-disjoint (iffij, ij/ik) pair-pair repulsions. These two types of contri- 
bution 'always have the opposite sign in the LMO basis and hence approximately cancel. 
This approximate cancellation is not observed in the CMO basis because diagram 3b vanishes 
identically. This observation is to be contrasted with the situation using spin irreducible 
pairs [3] where this partial cancellation does not occur. However, while this cancellation 
reduces the error due to pair-pair repulsions in the calculation of correlation energies this 
same cancellation of effects may not occur when calculating other properties. 

Finally, one must be somewhat cautious regarding conclusions with respect to basis com- 
pleteness. Considering the effort in basis optimization by Sasaki and Yoshimine [17] for Ne 
and by Meyer [1 O] for CH 4 who obtain valence shell correlation energies o f - 0 . 3 2 2  and 
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-0 .241  respectively it may seem surprising that the present basis should come close to 

100%. The basis of our conclusions is a detailed comparison with the numerical many body 
perturbation results of Lee Dutta and Das [2]. It should be noted that Das and co-workers 
quote an error of -+0.01; however, this represents the numerical precision of their calcula- 
tions and not  the error from a rigorous upper bound. This same error arising from the non- 

variational nature of the calculation must be present in our calculation as well. The major 

source of this type of error is the fact that the diagrams of Fig. 3 are not  summed to 
infinite order and the fact that we have not  included all non-EPV rearrangement diagrams. 

In addition, we have assumed that the correlation energy is not  strongly dependent on the 

accuracy of the SCF starting point. Our SCF results are not  particularly good and this may 

affect the accuracy of the correlation slightly. 
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